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Augustus: Diffusion (P1) Equation Set

α
∂Φ

∂t
−

−→
∇ ·D

−→
∇ Φ +

−→
∇ ·

−→
J + σΦ = S

Which can be written

α
∂Φ

∂t
+

−→
∇ ·

−→
F + σΦ = S

−→
F = −D

−→
∇ Φ +

−→
J

Where

Φ = Intensity

−→
F = Flux

D = Diffusion Coefficient

α = Time Derivative Coefficient

σ = Removal Coefficient

S = Intensity Source Term

−→
J = Flux Source Term

3 of 26



Augustus Mesh Description

Multi-Dimensional Mesh:

Dimension Geometries Type of Elements
1-D spherical,

cylindrical

or cartesian

line segments

2-D cylindrical

or cartesian

quadrilaterals or triangles

3-D cartesian hexahedra or degenerate

hexahedra (tetrahedra,

prisms, pyramids)

all with an unstructured (arbitrarily connected) format.

This presentation will assume a 3-D mesh.
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Augustus Method Overview
• Spatial Discretization

– Morel-Hall asymmetric diffusion discretization

– Support Operator symmetric diffusion discretization

• Temporal Discretization

– Backwards Euler implicit discretization

• Matrix Solution

– Krylov Subspace Iterative Methods

∗ JTpack: GMRES, BCGS, TFQMR, CG

∗ Preconditioners:

· JTpack: Jacobi, SSOR, ILU

· Low-order version of Morel-Hall or Support Opera-

tor discretization that is a smaller, symmetric sys-

tem and is solved by CG with SSOR (from JTpack)

– Incomplete Direct Method - UMFPACK

• Augustus is used as the diffusion kernel for the Spartan SPN

package and the Magnum MHD package
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Diffusion Discretization References

• Morel-Hall Asymmetric Method

– Described in

Michael L. Hall, and Jim E. Morel. A Second-Order Cell-
Centered Diffusion Differencing Scheme for Unstructured Hex-
ahedral Lagrangian Meshes. In Proceedings of the 1996
Nuclear Explosives Code Developers Conference (NECDC),
UCRL-MI-124790, pages 359–375, San Diego, CA, Octo-
ber 21–25 1996. LA-UR-97-8.

which is an extension of

J. E. Morel, J. E. Dendy, Jr., Michael L. Hall, and Stephen W.
White. A Cell-Centered Lagrangian-Mesh Diffusion Differenc-
ing Scheme. Journal of Computational Physics, 103(2):286-
299, December 1992.

to 3-D unstructured meshes, with an alternate derivation.

• Support Operator Symmetric Method:

– Extension of the method described in

Mikhail Shashkov and Stanly Steinberg. Solving Diffusion
Equations with Rough Coefficients in Rough Grids. Journal
of Computational Physics, 129:383-405, 1996.

to 3-D unstructured meshes, with an alternate derivation.
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Support Operator Method Derivation:
Outline

The Support Operator Method for Diffusion on Hexahedra:

• Represent the diffusion term (
−→
∇ ·D

−→
∇ Φ) as the

divergence (
−→
∇ ·) of a gradient (

−→
∇ )

• Explicitly define one of the operators (in this case, the

divergence operator)

• Define the remaining operator (in this case, the gradi-

ent operator) as the discrete adjoint of the first operator

• The previous step is accomplished by discretizing a por-

tion of a vector identity

In other words, the first operator is set up explicitly, and

the second operator is defined in terms of the first operator’s

definition.
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Support Operator Method Derivation

Starting with a vector identity,

−→
∇ ·

(
φ
−→
W

)
= φ

−→
∇ ·

−→
W +

−→
W ·

−→
∇ φ ,

where φ is the scalar variable to be diffused and
−→
W is an

arbitrary vector, integrate over a cell volume:

∫

c

−→
∇ ·

(
φ
−→
W

)
dV =

∫

c
φ
−→
∇ ·

−→
W dV +

∫

c

−→
W ·

−→
∇ φ dV .

Each colored term in the equation above will be treated

separately.

Aside: note that, if inner products for scalars and vectors are defined
by

〈
a, b
〉

=

∫

c

ab dV and

〈
−→
A ,

−→
B

〉
=

∫

c

−→
A ·

−→
B dV ,

and if φ = 0 on the boundary, such that the Green term vanishes, then
this equation becomes the definition of an adjoint,

〈
−

−→
∇ ·

−→
W , φ

〉
=

〈
−→
W ,

−→
∇ φ

〉
,

which shows that the divergence is the negative adjoint of the gradient.
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Support Operator Method Derivation

The Green term can be transformed via Gauss’s Theorem

into a surface integral,

∫

c

−→
∇ ·

(
φ
−→
W

)
dV =

∮

S

(
φ
−→
W

)
·
−→
dA .

This is discretized into values defined on each face of the

hexahedral cell,

∮

S

(
φ
−→
W

)
·
−→
dA ≈

∑

f

φf

−→
Wf ·

−→
Af .

The summation over faces (
∑

f ) includes six faces (+k, −k,

+l, −l, +m, −m), shown here for the intensity variable φ:
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Support Operator Method Derivation

The Red term is approximated by first assuming that φ

is constant over the cell (at the center value), and then

performing a discretization similar to the previous one for

the Green term:

∫

c
φ
−→
∇ ·

−→
W dV ≈ φc

∫

c

−→
∇ ·

−→
W dV ,

= φc

∮

S

−→
W ·

−→
dA ,

≈ φc

∑

f

−→
Wf ·

−→
Af .
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Support Operator Method Derivation

Turning to the final Blue term, insert the definition of the

flux∗,

−→
F = −D

−→
∇ φ ,

to get

∫

c

−→
W ·

−→
∇ φ dV = −

∫

c
D−1−→

W ·
−→
F dV .

Note that by defining the flux in terms of the remainder of

the equation, the gradient is being defined in terms of the

divergence.

The Blue term is discretized by evaluating the integrand at

each of the cell nodes (octants in 3-D) and summing:

−
∫

c
D−1−→

W ·
−→
F dV ≈ −

∑

n

D−1
n

−→
Wn ·

−→
FnVn .

∗the
−→
J term, which is necessary for a P1 solver, is omitted here and

is treated explicitly in the overall diffusion equation
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Support Operator Method Derivation

Combining all of the discretized terms of the colored equa-

tion and changing to a linear algebra representation gives

∑

f

φfWT
f Af = φc

∑

f

WT
f Af −

∑

n

D−1
n WT

nFnVn .

Rearranging terms gives

∑

n

D−1
n WT

nFnVn =
∑

f

(
φc − φf

)
WT

f Af .

Note that the right hand side is a sum over the six faces,

but the left hand side is a sum over the eight nodes.
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Support Operator Method Derivation

���
�

���
�

���
�

f2

A f3W

W

WT
f1

f2

f1

A

f1A

W

f3

Af1

Wn

WT A WT A
f3 f3 f2 f2

In order to express the node-centered vectors, Wn and Fn,

in terms of their face-centered counterparts, define

JT
nWn ≡




WT
f1Af1

WT
f2Af2

WT
f3Af3




,

where f1, f2, and f3 are the faces adjacent to node n and

the Jacobian matrix is the square matrix given by

Jn =
[

Af1 Af2 Af3

]
.
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Support Operator Method Derivation

Using this definition for the node-centered vectors Wn and

Fn and performing some algebraic manipulations results in

∑

n

D−1
n Vn




WT
f1Af1

WT
f2Af2

WT
f3Af3




T

J−1
n J−T

n




FT
f1Af1

FT
f2Af2

FT
f3Af3




= W̃TΦ̃ .

where the sum over faces has been written as a dot product

of W̃ and Φ̃, which are defined by

W̃ =




WT
1 A1

WT
2 A2

...

WT
Nlf

ANlf




, Φ̃ =




(φc − φ1)

(φc − φ2)

...

(
φc − φNlf

)




.

Nlf is the total number of local faces, which is equal to 6 in 3-D.
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Support Operator Method Derivation

To convert the short vectors involving the faces adjacent to

a particular node into sparse long vectors involving all of

the faces of the cell, define permutation matrices for each

node, Pn, such that




WT
f1Af1

WT
f2Af2

WT
f3Af3




= PnW̃ ,

where, for example,

Pn =




0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0




if f1 (n) = 3,
f2 (n) = 5,
and f3 (n) = 2.

Note that Pn is rectangular, with a size of Nd×Nlf (3×6

for 3-D, 2 × 4 for 2-D, 1 × 2 for 1-D).
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Support Operator Method Derivation

Using the permutation matrices, and defining F̃ in a fashion

similar to W̃ (F̃ is a vector of FT
fAf for each cell face), gives

∑

n

D−1
n VnW̃TPT

nJ−1
n J−T

n PnF̃ = W̃TΦ̃ ,

or

W̃T

[
∑

n

D−1
n VnPT

nJ−1
n J−T

n Pn

]
F̃ = W̃TΦ̃ ,

or

W̃TSF̃ = W̃TΦ̃ ,

where

S =
∑

n

D−1
n VnPT

nJ−1
n J−T

n Pn .

The original vector
−→
W (on which Wf and W̃ are based)

was an arbitrary vector. It can now be eliminated from the

equation to give

SF̃ = Φ̃ ,

which can easily be inverted to give the fluxes (dotted into

the areas) in terms of the φ-differences, F̃ = S−1Φ̃. This

is exactly the form needed for discretization of the diffusion

term within Augustus.
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Support Operator Method Derivation:
SPD Proof

The matrix S is symmetric, since

ST =

[
∑

n

D−1
n VnPT

nJ−1
n J−T

n Pn

]T

=
∑

n

D−1
n Vn

[
PT

nJ−1
n J−T

n Pn

]T

=
∑

n

D−1
n Vn

[
J−T

n Pn

]T[
PT

nJ−1
n

]T

=
∑

n

D−1
n VnPn

TJ−1
n J−T

n Pn

= S

The matrix S is positive definite, since

xTSx =
∑

n

D−1
n VnxTPT

nJ−1
n J−T

n Pnx

=
∑

n

D−1
n Vn

[
J−T

n Pnx
]T [

J−T
n Pnx

]

=
∑

n

D−1
n Vn

∥∥∥J−T
n Pnx

∥∥∥
2

> 0 if D−1
n Vn > 0 and J−T

n Pnx 6= 0

If S is SPD, then S−1 is also symmetric positive definite.

17 of 26



Comparison to
Morel-Hall Asymmetric Method

For an orthogonal grid, the flux out of a face can be defined

simply as

FT
fAf = −Df

(
φf − φc

)

∣∣∣rf − rc

∣∣∣
Af .

But for a skewed grid, this is incorrect.

The Support Operator Method corrects the left hand side

of the equation, defining each φ difference in terms of all

the face fluxes:
[
∑

n

D−1
n VnPT

nJ−1
n J−T

n Pn

]
F̃ = Φ̃ .

The Morel-Hall Asymmetric Method corrects the right hand

side of the equation, defining each face flux in terms of all

of the φ differences:

FT
fAf = −Df

[
J−TPfΦ̃

]T
Af .
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Support Operator Method Properties

• It is conservative.

• Material discontinuities are treated rigorously.

• It generates a symmetric positive definite matrix.

• It is second-order accurate.

• It has both cell-centered and face-centered unknowns.

• It has a local stencil.

• It reduces to the standard differencing scheme if the

mesh is orthogonal.

• It is not exact for linear functions.

The Morel-Hall asymmetric method does not share the

properties specified in Blue above.
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Second-Order Demonstration

Support Operator Method:

Problem Size (cells)
‖Φexact−Φ‖2
‖Φexact‖2

Error Ratio

2 × 2 × 2 7.4950×10−2

4 × 4 × 4 2.4163×10−2 3.10
8 × 8 × 8 5.5245×10−3 4.37

16 × 16 × 16 1.5467×10−3 3.57
32 × 32 × 32 3.6797×10−4 4.20
64 × 64 × 64 9.6113×10−5 3.82

Morel-Hall Asymmetric Method:

Problem Size (cells)
‖Φexact−Φ‖2
‖Φexact‖2

Error Ratio

2 × 2 × 2 7.4350×10−2

4 × 4 × 4 2.4044×10−2 3.09
8 × 8 × 8 5.4575×10−3 4.41

16 × 16 × 16 1.5256×10−3 3.58
32 × 32 × 32 3.6960×10−4 4.12
64 × 64 × 64 9.5032×10−5 3.88

Two-material problem, ratio = 10, GMRES/CG, Low-

Order Preconditioner, ε = 10−10, εpre = 10−9
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Kershaw-Squared Mesh
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Matrix Solution Time Comparison

Orig/(None,Diag) (RCM,MMD)/(ILU,IC) (Orig,MMD,MCL,GND)/(FSAI,AINV,AIB)
Ordering/Preconditioner Choice
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Diffusion Matrix Solution Summary

10 cell3 Kershaw2−Mesh Steady−State Marshak Wave Problem

Morel−Hall Asymmetric Method (solved by Bi−CGSTAB)

Support Operator Method (solved by CG)

Inherently Serial
    Methods

Parallelizable
    Methods

• This is a summary of extensive calculations that were done by
LANL CIC-19: Michele Benzi, Mike Delong, et al. Only the five
best times for each category are shown.

• All above runs were done on a Sun Ultra 2, solved to the same
tolerance.

• Matrix set-up time is NOT included.

• An AMG run on this problem on one node of an SGI Origin 2000
took 4 seconds on the MH discretization and failed on the SO
discretization.
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Matrix Solution Time Comparison

Orig/(None,Diag) (Orig,RCM,MMD)/(ILU,IC) (Orig,MMD,MCL,GND)/(FSAI,AINV,AIB)
Ordering/Preconditioner Choice
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Diffusion Matrix Solution Summary
200 cell2 Random−Mesh Steady−State 2−Material Problem

Morel−Hall Asymmetric Method (solved by Bi−CGSTAB)

Support Operator Method (solved by CG)

Inherently Serial
    Methods

Parallelizable
    Methods

(Matrix already scaled)

• This is a summary of extensive calculations that were done by
LANL CIC-19: Michele Benzi, Mike Delong, et al. Only the five
best times for each category are shown.

• All above runs were done on a Sun Ultra 2, solved to the same
tolerance.

• Matrix set-up time is NOT included.

• An AMG run on this problem on one node of an SGI Origin 2000
took 124 seconds on the MH discretization and 995 seconds on
the SO discretization.
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Matrix Solution Time Comparison

None Scaling Jacobi (3) SSOR ILU Low−Order UMFPACK
Preconditioner (or Alternate Solver)
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Diffusion Matrix Solution Summary
10 cell3 Kershaw2−Mesh Steady−State Marshak Wave Problem

Morel−Hall Asymmetric Method (solved by GMRES)

Support Operator Method (solved by CG)

• These results were generated from the Augustus code itself, using
JTpack and UMFPACK.

• All above runs were done on a Sun Ultra 1/170. All of the Krylov
solves had a tolerance of 10−7, but the UMFPACK solve was
accurate to machine precision, about 10−12.

• Matrix set-up time IS included.
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Matrix Solution Scalability

1 10 100
Cells on an Edge of the Cube
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Diffusion Matrix Scalability

Kershaw2−Mesh Steady−State Marshak Wave Problem

Morel−Hall Asymmetric Method (Total Time)

Morel−Hall Asymmetric Method (Solve Time)

Support Operator Method (Total Time)

Support Operator Method (Solve Time)

• These results were generated from the Augustus code itself, using
JTpack, on a Sun Ultra 1/170, with a tolerance of 10−7, using the
low-order preconditioner and CG or GMRES.

• Set-Up Time, Solve Time and Total Time scale according to (edge
cells)3, which is linear in total number of cells, for both methods.

• Matrix set-up time is ∼16% for MH and ∼21% for SO.

• Ratio of MH to SO is: Total Time - 70%, Solve Time - 75%.

• The preceding statements are for mid-range – values are less ac-
curate at the extremes.
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Conclusions

• The Support Operator Methodology has been extended

to 3-D Unstructured Hexahedral Meshes.

• For standard preconditioners, solution times for SO are

slightly better than MH.

• For the specialized low-order preconditioners, solution

times for SO are slightly worse than MH.

• Vanilla AMG works much better on MH than SO.

• Both methods provide second-order accurate solutions.

Future Work:

Parallel versions of Augustus and Spartan (a multi-group

SPN package) are being developed.
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